Wireless Communications for Collaborative Federated Learning
نویسندگان
چکیده
منابع مشابه
Decentralized learning for wireless communications and networking
This chapter deals with decentralized learning algorithms for in-network processing of graph-valued data. A generic learning problem is formulated and recast into a separable form, which is iteratively minimized using the alternatingdirection method of multipliers (ADMM) so as to gain the desired degree of parallelization. Without exchanging elements from the distributed training sets and keepi...
متن کاملCollaborative HARQ Schemes for Cooperative Diversity Communications in Wireless Networks
Wireless technology is experiencing spectacular developments, due to the emergence of interactive and digital multimedia applications as well as rapid advances in the highly integrated systems. For the next-generation mobile communication systems, one can expect wireless connectivity between any devices at any time and anywhere with a range of multimedia contents. A key requirement in such syst...
متن کاملCapacity of Wireless Ad Hoc Networks with Opportunistic Collaborative Communications
Optimal multihop routing in ad hoc networks requires the exchange of control messages at the MAC and network layer in order to set up the (centralized) optimization problem. Distributed opportunistic space-time collaboration (OST) is a valid alternative that avoids this drawback by enabling opportunistic cooperation with the source at the physical layer. In this paper, the performance of OST is...
متن کاملFederated Meta-Learning for Recommendation
Recommender systems have been widely studied from the machine learning perspective, where it is crucial to share information among users while preserving user privacy. In this work, we present a federated meta-learning framework for recommendation in which user information is shared at the level of algorithm, instead of model or data adopted in previous approaches. In this framework, user-speci...
متن کاملLinearization of M-LINC Systems Using GMP and Particle Swarm Optimization for Wireless Communications
In this paper, an efficient algorithm for the efficiency maximization of the multilevel linear amplification using nonlinear components (M-LINC) systems is proposed regarding the linearity of the system. In this algorithm, we use the generalized memory polynomial (GMP) to provide a behavioral model for the power amplifier (PA) and calculate the power spectral density (PSD) of the output signal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Communications Magazine
سال: 2020
ISSN: 0163-6804,1558-1896
DOI: 10.1109/mcom.001.2000397